A Moment Problem for Order Statistics
نویسندگان
چکیده
Necessary and sufficient conditions are given for a triangular array of numbers to be expectations of order statistics of some nonnegative random variable. Using well-known recurrence relations, the expectations of all order statistics of the largest sample size, n, in the triangular array, or the expectations of the smallest of every sample size up to and including n are sufficient to determine the whole array. The former are reduced to a Stieltjes moment problem, the latter to a Hausdorff moment problem. These results are applied to show that for every sample size, there is a positive random variable with geometrically increasing expectations of order statistics with arbitrary ratio and expectation of smallest order statistic. However, only the degenerate distributions have geometrically increasing expectations of order statistics for more than one sample size, even when the ratio and mean of the smallest order statistic can depend on the sample size. These results were required for a study of participation in discussion groups.
منابع مشابه
Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملRecurrence Relations for Quotient Moment of Generalized Pareto Distribution Based on Generalized Order Statistics and Characterization
Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distributions includes exponential distribution, Pareto distribution, and Power distribution. In this paper, we established exact expressions and recurrence relations satisfied by the quotient moments of generalized order statistic...
متن کاملHigher Order Moments and Recurrence Relations of Order Statistics from the Exponentiated Gamma Distribution
Order statistics arising from exponentiated gamma (EG) distribution are considered. Closed from expressions for the single and double moments of order statistics are derived. Measures of skewness and kurtosis of the probability density function of the rth order statistic for different choices of r, n and /theta are presented. Recurrence relations between single and double moments of r...
متن کاملPattern matching with affine moment descriptors
This paper proposes a method for matching images based on their higher order moments without knowing the point correspondences. It is assumed that the disparity between the images can be explained by an affine transformation. The second order statistics is used to transform the image points into canonical form, which reduces the affine matching problem for determining an orthonormal transformat...
متن کاملTENSION TRIGONOMETRIC SPLINES INTERPOLATION METHOD FOR SOLVING A LINEAR BOUNDARY VALUE PROBLEM
By using the trigonometric uniform splines of order 3 with a real tension factor, a numericalmethod is developed for solving a linear second order boundary value problems (2VBP) withDirichlet, Neumann and Cauchy types boundary conditions. The moment at the knots isapproximated by central finite-difference method. The order of convergence of the methodand the theory is illustrated by solving tes...
متن کامل